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Abstract Recent years have seen increased interest in experimental approaches in
pragmatics, but pragmatics has not been an experimental discipline from the start.
As a result, a common problem is one of mapping between theory and experimental
data: how do established theoretical notions carry over to precise predictions about
to-be-expected data?; conversely, what exactly do particular experimental tasks
measure, expressed in notions meaningful to pragmatic theory? I argue here that
explicit probabilistic modeling can provide a key for tackling these fundamental
issues.
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1 Towards theory-based statistical modeling

Experimental pragmatics is a relatively young scientific enterprise, but it builds
on long traditions in especially theoretical linguistics, psycholinguistics and ex-
perimental psychology. Its developmental lineage is both virtue and vice: on the
one hand, experimental pragmatics can tap into rich theoretical and methodological
knowledge bases, but, on the other hand, it may unduly hamper itself by a subop-
timal combination of elements from its theoretical and experimental ancestors. I
argue here that experimental pragmatics can benefit from endorsing the richness
of formal cognitive modeling, thereby going beyond mere hypothesis testing and
out-of-the-box regression analyses, techniques which I will call “theory-free.” The
alternative is to spell out, in the same data-generating model, both: (i) a theoretical
component (inspired by pragmatic theory), and (ii) a link function (inspired by
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variant

A B C D

task type ordinal ordinal binary binary
fillers many & most present absent present absent
no. participants in analysis 119 114 109 107

Table 1 Experimental variants

standard statistical modeling) that describes how the theoretical predictions map
onto observable choice probabilities in a given task.

For concreteness of example, Section 2 introduces what superficially looks like
inconclusive evidence obtained from two different task types: while a truth-value
judgement (TVJ) task indicates no contextual interference effects, a rating-scale
judgement (RSJ) task does. Discrepancies between results from different tasks are
relatively common in the recent literature, often leading to deadlocks and inability
to reach a consensus about important theoretical issues (e.g., the methodological
debate about whether there are “embedded implicatures” (c.f. Geurts & Pouscoulous
2009, Chemla & Spector 2011, Geurts & van Tiel 2013)).

The probabilistic model of Section 3 is able to resolve this apparent tension.
Putative differences between task types are accommodated by suitable link functions,
so that it is possible to maintain a uniform and explicit picture of what exactly is
measured in either task and how experimental manipulations relate to theoretical
notions of interest.

2 Case study: typicality of quantifiers

van Tiel (2014) and Degen & Tanenhaus (2015) independently looked at typicality
ratings for scalar some in sentences like “Some of the circles are black” in combi-
nation with different pictures of varying numbers of black and white circles. These
studies used a rating scale task and showed that the typicality of some is a gradient
function of the number of black circles (see left of Fig. 1). The data for this paper
comes from a partial replication of these studies with two additional manipula-
tions: (i) the task type and (ii) the presence/absence of quantifiers many and most as
additional fillers in the experiment.

Participants were recruited via Mechanical Turk and assigned to one out of four
variants in a between-subjects design (see Table 1). On each trial of any variant,
subjects were presented with a randomly generated picture of 10 circles, some of
which white, the others black. In variants A and B, subjects rated whether a sentence
was a good description of a picture on a 7-point rating scale. In variants C and D,
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Figure 1 Means of ordinal 7-point rating scale data (left), with the ith degree
coded as i−1

6 , and means of binary truth value judgements with true
judgement coded as 1.

subjects judged whether a sentence was true of the given picture or not. Participants
rated 13 sentences in variants A and C, which contained fillers with many and most,
and 8 in variants B and D, which did not contain these fillers. Each sentence was
either a random control sentence, a critical sentence with some, or a filler sentence
with many or most (for variants A and C only). Sentences were presented in pseudo-
random order with some constraints, the most important of which was that in variants
A and C, exactly one filler with many and one with most preceded the first encounter
of a critical some sentence. Mean responses from between 107 and 119 participants
per variant (see Table 1) are shown in Fig 1.

Does presence or absence of fillers with many or most have an effect on the
data under either task type? Visual inspection suggests that presence of alternatives
many and most seems to be reflected in ordinal RSJs, but perhaps not in binary
TVJs. Statistical analyses in support of this conclusion exists. Analyses that suggest
otherwise do too. The issue to debate is not which statistical analysis is least careless
or most adequate and certainly not which one is correct.

There are more general questions. What do TVJs and RSJs measure? Same
thing or different? Is whatever is measured influenced by the presence or absence
of alternatives? If so, how? Is what is measured influenced by experimental ma-
nipulations in the same way in either task? What does it even mean to measure
something with a task, and, most importantly, how is whatever we measure related
to a rich body of pragmatic theory? It is difficult, if not impossible, to address this
by testing null-hypotheses or calculating regression models. But that does not mean
that statistical modeling is at its end, of course. The key is to inject pragmatic theory.
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3 A probabilistic model

The (simplified) structure of (Bayesian) regression modeling is this:

(1) predictor value + link function = likelihood of data .

For each data point d we compute a predictor value xd as a (e.g., linear) function
of a vector of coefficients ~b, that represents the influence of all relevant explanatory
factors, and the values for these factors associated with d. The predictor value xd is
then mapped onto a likelihood P(d | ~b, . . . ) by a link function suitable for the task.

Standard regression models are, in a manner of speaking, theory-free. The pre-
dictor value xd is retrieved from some general-purpose, mathematically convenient
function of coefficients ~β. In contrast, a theoretically informed data-generating
model would mold domain-specific assumptions into a specific, tailor-made map
from factors to predictor value xd. Unlike in theory-free models, the latent predictor
variable xd can be conceptually meaningful in theory-driven models. From the point
of view of a theoretically informed model, xd is what a task measures.

Link functions can remain the same for theory-free and theory-inspired models.
To ask whether two tasks could plausible measure the same thing, is to find a
plausible theoretical model for xd, plug it into different link functions, and see
whether data from both tasks can be handled in the combined model. Let’s do that.

Pragmatic model of the predictor value. We need a measure for the pragmatic
felicity of statement “Some of the circles are black” in each of the 11 conditions (0, 1,
. . . 10 of the 10 circles being black). Pragmatic felicity is influenced by, among other
things, the purpose of the conversation and, being a relative notion, the pragmatic
felicity of other possible expressions. Inspired by game theoretic and probabilistic
pragmatics, the assumption here is that pragmatic felicity is the (scaled) expected
utility of the some statement, relative to that of alternative statements, to a speaker
who describes a given picture for a literally interpreting listener (because such a
speaker demonstrably implements Gricean language use).

Fix conditions c ∈ {0,10} for the number of black balls and messages m ∈ M =

{none,one, two, three,some,many,most,all}, where some is taken to mean “at least
one,” most to mean “more than half” and many to mean “at least 4” (fixed ex post by
subjects’ actual judgements of many-sentences). Degrees of salience of alternatives
to some are estimated from the observed data (see Franke 2014).

A literal listener interprets message m as a random state in which m is true. If
c is the actual state and the literal listener guesses c′, then the speaker’s utility is a
parameterized function of the distance between c and c′ (Nosofsky 1986):

U(c,c′ ; π) = exp(−π (c− c′)2) .(1)
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Here, π is a free parameter for pragmatic precision: if π→∞ only guessing the true
state has positive utility; as π decreases near guesses have more and more utility; for
π = 0 all interpretations are equally good.

A speaker’s expected utility of using message m in condition c is:

EU(m,c ; π) =
∑

c′
PLL(c′ | m) U(c,c′ ; π) ,(2)

where PLL(c | m) is the probability that the literal listener chooses interpretation c
for m. To reflect competition between alternative expressions, as Gricean pragmatics
would have us do, consider the scaled expected utility for some in each condition,
relative to any set X ⊆ M of entertained alternatives (this always contains some):

EU∗(c,X ; π) =
EU(some,c)−minm∈X EU(m,c)

maxm∈X EU(m,c)−minm∈X EU(m,c)
.(3)

Speakers may not entertain a fixed set of alternatives X. If the probability of
entertaining alternatives is given by a probability vector ~s of length 7, and if we
assume (crudely) that probabilities of entertaining alternatives are all independent,
the probability that set X is entertained is P(X | ~s) =

∏
m∈X sm

∏
m∈M\X (1− sm). The

central tendency of relative pragmatic felicity of some in condition c is then:

F(c ; ~s,π) =
∑

X

P(X | ~s) EU∗(c,X ; π) .(4)

This is a theory-driven predictor for TVJs and RSJs alike.

Link functions. Let’s consider standard link functions from regression modeling
for our task types. For binary response variables, like from TVJs, the link function is
usually given by a logistic function whose output is fed into a binomial distribution.
If the data is a number k of true responses out of n observations, then the likelihood
is Binomial(k,n, p) with probability p = (1 + exp(−γ(x− θ)))−1 given by a logistic
function of predictor value x with threshold θ and gain γ.

For ordinal response variables, like from RSJs, xd is fed into a thresholded
probit model and the outcome is piped into a multinomial distribution. Let ~k
be a vector of counts with kd the number of choices of degree d ∈ 1, . . .7 on the
7-point rating scale, and n the number of observations. Then the likelihood is
Multinomial(~k,n, ~p) where ~p is a probability vector of length 7, calculated as follows.
Each degree d is associated with an interval Id, the boundaries of (some of) which
are free model parameters. Intervalls for all degrees form a partition of the reals. We
assume that, on each choice occasion, the predictor value x is perturbed by Gaussian
noise with standard deviation σ. The degree corresponding to the interval in which
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condition c ∈ {0, . . . , 10}

s+/−i ∼ Beta(1, 1)

1
π
∼ Gamma(0.5, 0.5)

F+/−c = F(c ; ~s +/−, π)

σ ∼ Uniform(0, 0.4)

δd∈{1,...,6} ∼ Normal(d/7, 14)
δ0 = −∞; δ7 = ∞

θ ∼ Normal(0.5, 0.2)

1
γ
∼ Gamma(1, 1)

pA/B
cd =

∫ δcd

δcd−1 Normal(x, F+/−c , σ) dx

pC/D
c = (1 + exp(−γ(F+/−c − θ)))−1

kA/B
cd ∼ Multinomial(pA/B

cd , nA/B
c )

kC/D
c ∼ Binomial(pC/D

c , nC/D
c )

Figure 2 Probabilistic graphical model (see Lee & Wagenmakers 2015).

the perturbed value resides is chosen. Hence, the probability pd of observing a choice
of degree d on the rating scale is the probability that the Gaussian perturbation of x
lies in Id. A formalization of this idea is contained in Figure 2.

Data-driven inference. Figure 2 gives the full probabilistic model, using the
conventions for probabilistic graphical models of Lee & Wagenmakers (2015).
Arrows indicate dependencies of variables. The observed data, in shaded boxes,
informs the values of the latent parameters. Latent parameters without dependencies
are constrained by suitable prior distributions, as given on the right in Figure 2. The
most important detail is that two vectors of salience of alternative messages are used,
~s + for the case where alternatives are present, and ~s − otherwise.

Estimates of the joint posterior over latent parameters, conditional on the data,
were obtained by MCMC sampling using JAGS (Plummer 2003). After a burn-in of
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10,000 samples, every second of another 10,000 samples entered into the analysis.
Convergence was assessed by visual inspection and R̂ values (Gelman & Rubin
1992). Posterior predictive checks confirm that the model, when using posteriors of
model parameters, generates virtual data that is indistinguishable from the actual. In
this weak sense, the model seems to “work” alright: it is possible to think that the
same underlying value generated both TVJs and RSJs at the same time.

The most interesting inference is that of posteriors of salience of messages.
Figure 3 shows estimates from the MCMC samples. Model and data suggest that
most is made more salient by its presence, but not many. Empirical and theoretical
consequences of this prediction remain to be explored.

4 Conclusions

Pragmatic notions of theoretical interest can be crafted into quantitative models
of latent predictor values. Combined with standard link functions from regression
modeling, we obtain theory-driven, data-generating models, with the help of which
we can start to make sense of otherwise eluding pieces of data.

The particular model given in this paper is merely an example. It raises many
further issues. These issues, however, are meaningful to experimental pragmatics
and could not be perceived clearly and discussed stringently without any concrete
model on the table. It is an empirical question whether this model, or any other is the
right way to think about truth-value or rating scale judgements. To decide between
competing models, statistical model comparison based on suitable data is necessary.
Doing so will give a better understanding of what different tasks are measuring,
how a measure is influenced by factors of relevance and what we may or may not
conclude from experimental data. In sum, experimental pragmatics will benefit from
explicit, theory-driven probabilistic modeling of the whole data-generating process.
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